Tuning curves for movement direction in the human visuomotor system.

نویسندگان

  • Sara Fabbri
  • Alfonso Caramazza
  • Angelika Lingnau
چکیده

Neurons in macaque primary motor cortex (M1) are broadly tuned to arm movement direction. Recent evidence suggests that human M1 contains directionally tuned neurons, but it is unclear which other areas are part of the network coding movement direction and what characterizes the responses of neuronal populations in those areas. Such information would be highly relevant for the implementation of brain-computer interfaces (BCIs) in paralyzed patients. We used functional magnetic resonance imaging adaptation to identify which areas of the human brain show directional selectivity and the degree to which these areas are affected by the type of motor act (to press vs to grasp). After adapting participants to one particular hand movement direction, we measured the release from adaptation during occasional test trials, parametrically varying the angular difference between adaptation and test direction. We identified multiple areas broadly tuned to movement direction, including M1, dorsal premotor cortex, intraparietal sulcus, and the parietal reach region. Within these areas, we observed a gradient of directional selectivity, with highest directional selectivity in the right parietal reach region, for both right- and left-hand movements. Moreover, directional selectivity was modulated by the type of motor act to varying degrees, with the largest effect in M1 and the smallest modulation in the parietal reach region. These data provide an important extension of our knowledge about directional tuning in the human brain. Furthermore, our results suggest that the parietal reach region might be an ideal candidate for the implementation of BCI in paralyzed patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas.

Studying how motor adaptation to visuomotor rotation for one reach direction generalizes to other reach directions can provide insight into how visuomotor maps are represented and learned in the brain. Previous psychophysical studies have concluded that postadaptation generalization is restricted to a narrow range of directions around the training direction. A population-coding model that updat...

متن کامل

Latent inputs improve estimates of neural encoding in motor cortex.

Typically, tuning curves in motor cortex are constructed by fitting the firing rate of a neuron as a function of some observed action, such as arm direction or movement speed. These tuning curves are then often interpreted causally as representing the firing rate as a function of the desired movement, or intent. This interpretation implicitly assumes that the motor command and the motor act are...

متن کامل

A Bayesian approach for characterizing direction tuning curves

22 Neural responses are commonly studied in terms of “tuning curves”, characterizing changes in neuronal 23 response as a function of a continuous stimulus parameter. In the motor system, neural responses to 24 movement-direction often follow a bell-shaped tuning curve, whose exact shape determines the properties of 25 neuronal movement coding. Estimating the shape of that tuning curve robustly...

متن کامل

A Bayesian approach for characterizing direction tuning curves in the supplementary motor area of behaving monkeys.

Neural responses are commonly studied in terms of "tuning curves," characterizing changes in neuronal response as a function of a continuous stimulus parameter. In the motor system, neural responses to movement direction often follow a bell-shaped tuning curve for which the exact shape determines the properties of neuronal movement coding. Estimating the shape of that tuning curve robustly is h...

متن کامل

Directional tuning curves, elementary movement detectors, and the estimation of the direction of visual movement.

Both the insect brain and the vertebrate retina detect visual movement with neurons having broad, cosine-shaped directional tuning curves oriented in either of two perpendicular directions. This article shows that this arrangement can lead to isotropic estimates of the direction of movement: for any direction the estimate is unbiased (no systematic errors) and equally accurate (constant random ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 40  شماره 

صفحات  -

تاریخ انتشار 2010